
.

P VMlib – an object-oriented library for visualizing observation

sequences in spacecraft missions

Ansel Teng and Meemmg Lee*
Jet Propulsion Lab

4800 Oak Grove Dr. MS 168-522
Pasadena, CA 91109

Keywords: visual simulation, spacecraft missions,
observation sequence, interactive 3-D graphics, object-
oriented programming.

Abstract

VMlib is a C++ library for visualizing spacecraft mis-
sion simulations with an emphasis on the execution of
observation sequences. It provides multiple views on
the scenario using the state-of-the-art interactive 3-D
computer graphics to help the design and validation of
the observation sequence. It is designed to be a flexible
toolkit to support multiple missions in a variety of appli-
cation environments. Mission independence is achieved
by parametrizing mission description into input jiles.
The object-oriented design allows the mission class to
be subclasses for various application environments. The
library has been used to develop both stand-alone pro-
grams and a visualization server in distributed simula-
tions. These applications are used in support of several
on-going missions at the Jet Propulsion Lab.

1 Introduction

Visualization is a powerful tool to convey complex
concepts and to understand complex phenomena. With
the increasing graphics capability in the desktop work-
stations, visualization has been used in several commerc-
ial software packages [1, 2, 6] to present simulation
results for spacecraft mission design. However, the ex-
isting software packages focus on either trajectory de-
sign or ground coverage analysis, and provide little help
for the design of the observation sequences in a space-
craft mission. An observation sequence consists of a se-
quence of commands that orchestrates the subsystems
of the spacecraft so that the instrument subsystem can
optimally observe the target to obtain the best science
data possible. Traditionally, observation sequences arc

“l’his work was performed at tile Jet Propulsion Latmratory,
(!aliforrlia Institute of l’rchllolugy under contract with the Na-
tiotlal Aeronautics and SImcc Adlnini strati on.

designed and validated based on mathematical calcu-
lations. Without a good comprehension of the 3D ge-
ometry involved in the sequence, it is very difficult to
design a sequence that maximizes the scientific return
while satisfies all the constraints, let alone evaluating
the validity of the sequence in the face of uncertainties.

As part of our effort to create a comprehensive sim-
ulation system for the design and validation of generic
science observation sequences [4], we developed the Vir-
tual Mission Visualization Library (VMlib) to provide
the visualization capability of the system. Since our
system is designed to support multiple missions, the li-
brary must also be mission-independent. Furthermore,
each simulation scenario may require a different com-
binations of program modules, so the library must be
self-sufficient to run in a stand alone program yet adapt-
able to allow connections to other simulation modules
in a distributed environment.

The library is written in C++ following the object-
oriented paradigm. It consists of a set of classes that
provide high-level visualization capabilities for space-
craft mission scenarios. The graphical functionalities
are built on top of the Open Inventor 3-D graphics li-
brary [5]. Open Inventor contains a comprehensive set
of classes and methods that can be used to create in-
teractive 3D graphics applications. It is a high level
graphics library in the sense that the user simply builds
a scene graph to describe the scene and the viewing cam-
era while the library handles the details of the render-
ing process. Using the Open Inventor library enables us
to focus our development efforts on constructing scene
graphs from mission clescriptions, interfacing with other
mission simulation components, and exploring various
visualization methods.

We will present the VMlib class hierarchy in the
next section ancl describe the mission parameters in
%ctions 3. A~)plication examples arc discussed in SeC-
tion 4. Data crcatml in our visualization for the New
Millcnniu[n DS-1 nlissioll [3] will be used throughout
the ~)ilp(!l’for illustrations.

1

Events Bodies

Figure 1: The major classes in the VMlib and their
relation.

2 Class Hierarchy

VMlib consists of several object classes as shown in
Figure 1. The Mission class sits at the top of the hi-
erarchy. An application instantiates a Mission object
to create the visualization. A Mission object initial-
izes the component objects, controls theprogress of the
simulation, and coordinates the interactions among the
components. Under the Mission class, the Body-1ist
maintains the information of the bodies involved in the
visualization, such as the spacecraft, the Sun, the Earth,
and the target bodies. The Event -schedule is a list of

events for visualization control such as starting/ending
titne, time resolution control, and viewpoint control.

Several View class objects visualize simulation results
using a variety of viewpoints and methods.

The operation model of the Mission class follows the
event-driven paradigm provided by the Open Inventor
library. After the initialization, the starto method reg-

isters event handlers and enters the main loop, The
progress of the simulation is made by the updateo
method called from a timer event handler. The up-
dateo method performs the following tasks:

1.

2.

3.

4.

Execute commands in the Event_schedule up to the
current simulated time;

Update the geometry of each bodies in the
Bodylist;

Re-render the views;

Determine the time of the next simulation step.

The timer event hancller can be scheduled or unschedu-
led by a mouse event handler. This allows the user to
start, /pause/resume the visualization at the click of a
mouse.

T1)c following subsections provide more detailed de-
scriptions of the components:

2.1 Body List

The Body-list class maintains an array of Body class
objects. Each Body object contains attributes of its ge-
ometry and appearance such as position, attitude, size,
shape, solid model, color, texture, etc. An Orbit class
object can also be attached to a Body object to show
the trajectory of the object.

Most of the attributes are set during the initializa-
tion and remains unchanged throughout the sitnulation.
The position, attitude, and orbit are updated for each
simulation step. The state, i.e. position and attitude, of
the celestial bodies are calculated from trajectory data
files. The data files are in the SPICE format invented at
JPL for archiving spacecraft states and mission events.
The Object-Oriented SPICE (00 SPICE) library [9]
is used to propagate a body state for specified time and
reference coordinate system. The spacecraft state can
be updated either by using a trajectory data file, or
by assigning the result from another simulation compo-
nents.

Choosing coordinate systems is critical in a cosmic-
scale visualization [7]. 64-bit precision is required to
maintain the accuracy in coordinate calculation, but
the Open Inventor library and the underlying graph-
ics hardware supports only 32-bit precision for floating-

point numbers. To accommodate these two conflicting
requirements, each body maintains two coordinates: a
world coordinate with respect to a scenario-specific ref-
erence body using double-precision numbers for position
calculation, and a graphical coordinate with respect to
the spacecraft for constructing the scene graphs. The
world coordinate system provides intuitive interpreta-
tions of the spacecraft movement, while the the graph-
ical coordinate system maximizes the depth resolution
needed near the spacecraft.

2.2 Views

The VMlib provides multiple views to look at several
aspects of the simulation. Currently, four types of views
are supported:

1.

2.

Trajectory view: visualizes the geometry atnong

the bodies with their trajectories, as shown in Fig-
ure 2. It provides an overview of the simulated
scenario.

Spacecraft view: a close-up on the spacecraft to
show its attitude change and articulation. In the

example shown in Figure 3, the cylindrical beam
indicates the SUHlight, clircction and the cone along
the instrument field-of-view Iuarks where sulk light
slmuld lx! avoifkxl.

L

Figure 4: The instrument view showing the Earth and
the fields of view of the four sensors.

Figure 2: TIN trajectory view showing the DS-1 space-
craft, the Earth, and the h~oon.

Figure 5: The pointing view showing the target move-
ment with regard to the instrument boresight during an
IR scan operation.

Figure 3: The spacecraft view’ showing the IX-1 space-
craft.

3. lnstrulncnt vimv: provides the view through the in-
strument system to visualize the geometry between
the target body and tllc fields-of-view of the sen-
sors. SCCFigure 4 for all example. The field-of-view
indicator of each sensor can k set to Mink to in-
dicate a sna~) action. Although this view is hardly
an instrument simulation, it proviclcs critical infor-
mation rcgardiug tho quality of the inlage product
such as target, size, target position, and sun light
phase auglc.

is marked by an arrow pointing along its direction
of motion. Its trajectory in the view is indicated
by line seqments that fade over time, and grid lines

are drawn to provi(ic the scale. This view is useful
for checking the pointing accuracy and the stabil-
ity of the spaccwraft, and prcdictiug their impact (
such as blurring) on the data product quality.

The View classes arc designed using inheritance: a
base VM-View class provides the common functionality
among all views, while a derived class is created for each
view typctohandlc thcspccifics. Although allvicws arc
used to look at tllcgcoJ~lctric rclatioll~ rlaitltaitledill the
Bodylist, each view constructs itsowm sccmc graph so
that the bodies appear in each view with appropriate
scales and features. For a realistic visual effect, star
field can be added to the background using data from
a real star catalog.

4. Pointing view: an abstraction of the instrument 2.3 Event Schedule
view with a further reduced field-of-view. It vi-
sualizes the minute movmmmt of the! target with ‘Nw Event-schcdulc class maintains a list of Event
respect to the instrument systcm at sub-pixel res- class objects. Au Event object is a visualization control
olution, as shown in Figure 5. TILC target position command that should bc performed at a specific time.

.

‘1’hc coll)mand may be a progress control such as stop-
ping the simulation or changing the tirnc resolution, or
a graphics control such as displaying a label or changing
the viewing parameters.

Since the time at which a particular event should
bc executed isusually related to another event such as
launch, the start/end of an observation sequence, or the
closest encounter with a target, the time attribute of an
Event is implemented using a base-offset mechanism.
The Eventscheclule maintains a table of base times, and
each Event object contains a pointer to an entry of the
base time table and an offset with respect to that base
titne. With this mechanism, the same event description
file can be used for testing an observation sequence at
different times.

3 Mission Parameters

The VMlib is designed to support multiple missions.
Consequently, the mission data must be parameterized
and read as input during run time. Since a mission de-

scription requires numerous parameters, they are main-
tained in files. The parameter file syntax is defined in

a way such that the parameters can be grouped hierar-
chically to reflect the object structure and the relation
among the objects. A Mission object will then be con-
structed from such a parameter file. For the reason of
modularity, the Bgdylist and the Event-schedule will
be constructed from their own parameter files and only
the file names will be kept in the Mission parameter file.

The following subsections show parameter file exam-
ples for a calibration sequence of the DS-1 mission. The
sequence is scheduled at the 29th day after the launch
using either the Earth or the Moon as the target.

3.1 Mission

The following is the Mission class parameter file:

NAME = NEWMDS-1
MISSION_ CONFIG = dsl mission
BODY.LIST = newm. body _list
EVENT = newmL29. event
REFERENCE = EARTH

TR_VIEW {
SIZE = 640 540

USE_VIEWER = 1

}
SC_VIEW {

}
IS_VIEW {

FOV_MAP = micas. f ovmap. iv

SIZE = 660 660

}
BACKGROUND= 0.0 0.0 0.

STAR_FIELD-SIZE = 6000

The first few line provides the name of the mission
and the names of other parameter files for initializing

the component objects. The MISSION-CONFIG pa-
rameter is the file name of the mission configuration file
which contains the basic information of the mission and
the observation sequences. The REFERENCE keyword
specifies that the earth is used as the origin for the world
coordinate system. The View class objects are speci-
fied subsequently and the attributes for each view are
grouped using a pair of curly braces under the name of
the view. The last two lines specifics a black sky with
a 6000-star star field as the background of the views.

3.2 Body list

as
The parameter file for the Body -1ist object is shown
follows:

NEWMILLENNIUM{

TYPE = SC

SCALE = 60

SHAPE = dsl_sc. iv

ORBIT = red

}
SUNB {

TYPE = STAR

}
MCAULIFFE {

TYPE = ASTEROID

SCALE = 40000
COLOR = seagreen
TEXTURE = dion2. rgb
ORBIT = seagreen

3
EARTH{

TYPE = PLANET
SCALE= 120000
COLOR= skyblue
TEXTURE= clouded_ earth_ b_256. rgb
ORBIT = skyblue

}

Four bodies are listed in this file: the Sun, the
Earth, a spacecraft named NEWMILLENNIUM, and
the target asteroid named MCAULIFFE. The at-
tributes grouped under each body name describe the
visual property of the body.

3.3 Event Schedule

The following is the Event-schedule parameter file for
this scenario:

SECTION {
NAME= PRE-SEQ

T.BASE = JUL-30-1998/12:00:00

EVENTS {

JUL-13-1998/00:00:00

JUL-13-1998/OO: 00:00

JUL-13-1998/00 :00:00

JUL-29-1998/00:00:00
JUL-30-1998/li :59:50

JUL-30-1998/12:00:00

}

}
SECTION {

NAME = POST_SEQ

start

label L+29 Sequence

sc_pointing MOON
time_inc 3600
time_inc 1

label Sequence Start

T_BASE = JUL-30-1998/13:59:00
EVENTS {

JUL-30-1998/14:00:00 time_inc 86400
AUG-30-1998/00:00:00 stop

}

}

The event schedule is divided into two sections: the
first one, named “PRE3EQ’’,i sintended tocontrol the
visualization before the observation sequence, and the
second one, named “POST-SEQ”, controls the visual-
ization afterward. The T-BASE parameter provides the
base time for each section. Although each event isde-
scribed using an absolute time, the section base time
will be subtracted from the event time to obtain the
offset. The Event_schedule will maintain a table con-
taining the two base times and set the base time pointer
in each event to the appropriate entryin the table.

3.4 Parsing Parameter Files

Although each parameter file hasits own set ofkey-
words and arrangements, they can all be modeled as a
tree structurein which each node contains apairof key-
word and value strings. To facilitate efficient parameter
retrieval from the structure, we created another class li-
brary, called Partree [8], to parse a paratneter file into
such a tree structure. Instead of reading the parameter
file directly, each object will be constructed from a tree
or a branch (subtree) using the search and naviga-
tionmethods provided by the Partree class. Using this
intermediate structure has a few advantages:

1. Reduced development cost: instead of writing a
complete parser for each class, the effort spent in
parsing sophisticated lexical and syntactical rules
is re-used;

2. Better control in interpreting input: the program
actively searches for pararnete rkeywordand takes
action upon the search result. This usually im-
proves the code structure;

3. Enables sharing paratncter files between a base
class and its derived class: if both the base

d:WS and the derived class are const rutted froln
a Partree object, the derived class constructor will
be able to initialize its base class using the same

Partree object,

4 Applications

The Mission class discussed above is capable of per-
forming a visual simulation on its own. The spacecraft
position will be interpolated from the OOSPICE data
file and the attitude will be set to point the spacecraft
instrument at the target automatically. This is useful
forgetting an overview of the trajectory as well as for
understanding the target size and phase angle in the
data product.

The VMlib is designed to support not only multiple
missions, but also avariety ofapplication environments.
The adaptation to a specific application environment is
done by using class derivation. The following subsec-
tions describe the applications developed based on the
VMlib.

4.1 Observation Sequence Design

The objective of this application is to provide a stand
alone program for the sequence designer to visualize the
execution of the observation sequence in the context of
spacecraft operation. The execution of an observation
sequence includes turning the spacecraft tohaveaspe-
cific instrument pointed at the target or slewed across
the target. Itisnecessary tointegrate with our payload
executive module [4] inorder tosimulate the spacecraft
pointing and navigation mechanism.

To incorporate the payload executive module into the
VMlib, we derived a Mission-pi class from the base Mis-
sion class. The following functions are implemented to
override those of the base class:

1. The constructor: like the base Mission class, a Mis-
sion-pi class is initialized from a Partree object.
The constructor initializes the base class using the
same partree, and retrieves the paratneters that are
added specifically for the derived object. These ad-
ditional parameters are:

SEQUENCE = sequence29

EVENT = newmL29. event {
T_BASE-REF {

PRE-SEQ = <BOS
POST-SEQ = <EOS>

}
}

Ttlc Mission-pi ol)jcx:t, constructs a payload cxwu-

tive ot)jcct using the SEQUENCE pilralnetcr which

5

.

Figure 6: The distributed simulation architecture.

2.

specifies a sequence in the mission configuration file
to simulate. The T.BASEREF attributes specifies
how to adjust the event base times according to the

sequence. The symbol <BOS> refers to the begin-
ning of the sequence and <EOS> the end of the
sequence. These times are available from the pay-
load executive module. The base time table in the
Event_schedule will be modified so that the simu-
lation events are scheduled according to the actual
sequence time.

The updateo method: instead of asking the
Bodylist to update spacecraft states using a tra-

jectory file, updateo now calls a method of the
payload executive object to obtained the simulated
spacecraft state and sets the corresponding data in
the Bodylist.

With the Mission.pl class, the sequence designer can
interactively edit the observation sequence and see the
simulation result. The same sequence can also be ap-
plied to a different target or at a different time without
changing the visualization parameter files. Spacecraft
performance parameters can be modified and naviga-
tion errors can be injected to test what-if scenarios and
to evaluate the impact of the spacecraft performance on
the image product quality.

4.2 Instrument Performance Simulation

In a large scale instrument performance simulation
that involves not just the spacecraft system but also the
camera simulation and data analysis tools, running all
components uncler one program becomes impractical.
Instead, a message-driven distributed simulation is used
as shown in Figure 6.

In this architecture, the VMlib is adapted as a visu-
alization server that reacts to messages from the sinlu-
lation driver. The driver maintains the event schedule (
l)y using a Evcntschmlule object) and the payload sc-

flll(!ll~e tO determine the current sinlulation tithe, ~:~lls

the payload executive module for spacecraft states, and
sends out messages to the other modules.

To adapt VMlib for this environment, we derived the
h4issionsv class from the base Mission class. The con-
structor is identical to the Mission class, \Vhen a Mis-
sion-w object starts its main loop, instead of inserting
a timer event handler for update, it registers a remote
procedure call (RPC) request handler to execute the in-
coming events. A small relay program sits between the
visualization server and the inter-process message net-
work to translate the messages into Event objects and
make RCP calls to the visualization server.

5 Conclusion

In this paper, we presented VMlib, an object-
oriented library for visualizing the execution of obser-
vation sequences in spacecraft missions. The library
is designed to be a flexible toolkit to support multiple
missions in a variety of application environments. The
versatility is achieved through object-oriented design,
mission parametrization, and the use of an intermedi-
ate structure for parsing parameter files.

The library provides multiple views for visualizing
the observation sequence to help understanding the im-
pact of spacecraft performance on the instrument ob-
servations. It has been used in several of the advanced
mission designs at the Jet Propulsion Lab, and has fa-
cilitated efficient identification of problem areas during
the early phase of a mission design process. It is a solid
building block toward the faster-cheaper-better mission
design methodology.

References

[1]

[2]

[3]

[4]

[5]

[6]

Analytical Graphics. 1997. Satellite Tool Kit.
http://www.stk. cont.

Autometric Incorporated. 1997. OMNI.
http://www. autometric. corn.

Jet Propulsion Lab. 1997. Deep Space One.

http://epic.jpl. nasa.gov/dsl.

M. Lee, R.L. Swartz, A. Teng, and R.J. Weiclner.
Encounter geometry and science data gathering
simulation. In Proc. AIAA Guidance and Control
Conference, 1997.

Open Inventor Architecture Group. 1994. Open
InventorT~f c++ Reference ~anua[. Addison-
Wesley.

D.Y. Stodden an(l G. I). Galasso.
Orbit Analysis Program (SOAP)
Tllc Aerospace Corlmration.

1996. Satellite
User’s Manual.

6

.

i’ [7] M. R,. Stytz, J. Vandcrburgh, and S.13. Banks.
1997. The Solar System Modeler. IEEE Computer
Gmphics und Applications, 17(5), pages 47-57.

[8] A. Teng. 1997. PARTREE - a parameter file
parser for application and object initialization.
http://houyi.jpl. nasa.gov/ teng/partree.

[9] R.J. Weidner. 1997. Object-oriented SPICE Li-
brary. http://cicero.jpl. nasa.gov/richard.

7

